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Glaucoma: One Disease, Many Treatments

Glaucoma: group of eye diseases associated with elevated
intraocular pressure (IOP).

IOP can be measured in various ways.
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Glaucoma: One Disease, Many Treatments

Treatment options attempt to lower IOP, they include:

� Lifestyle changes.

� Eye drops (numerous options).

� Surgery.
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Glaucoma: One Disease, Many Treatments

Treatment decisions are made based on various factors:

� Current and past IOP.

� Current and past treatments.

� Concerns over side effects.

� Broader risk factors.

� Other characteristics (such as age).
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Glaucoma: One Disease, Many Treatments

Treatment decisions are made based on various factors:

� Current and past IOP.

� Current and past treatments.

� Concerns over side effects.

� Broader risk factors.

� Other characteristics (such as age).

Precision Medicine: tailoring treatment decisions to patient-level
characteristics.
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Dynamic treatment regimes

� Dynamic treatment regimes (DTRs) ‘formalize’ personalized
treatment:

“Patient presents with historic IOP of 13 and is taking
Azarga. If current IOP is 15 or higher, add Alphagan,

otherwise continue with only Azarga.”

� How do we choose the best DTR?

Should our IOP cut-off be 13, 15, 20?

� What makes this difficult?
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The Data

We typically work with data from observational studies.

Observed Drop IOP at
Patient IOP added? 3 months

1 16 No 15
2 20 Yes 16
3 21 Yes 17
4 16 Yes 16
5 15 No 18
... ... ... ...
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The Data

We typically work with data from observational studies.

Observed Drop IOP at
Patient IOP added? 3 months

X A Y

1 16 No 15
2 20 Yes 16
3 21 Yes 17
4 16 Yes 16
5 15 No 18
... ... ... ...
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Notation

X A Y

Pre-treatment
covariates

Treatment
received

Outcome

  New drop? 3 month IOPInitial IOP

DTR: treatment Aopt that optimizes E [Y |X ,Aopt ]
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Identifying the best treatment regime: multi-stage

DTR: treatment sequence Aopt
1 ,Aopt

2

7



Identifying the best treatment regime: multi-stage

DTR: treatment sequence Aopt
1 ,Aopt

2

8



Single Stage Analysis

X A Y
Observed Drop IOP at

Patient IOP added? 3 months
X A Y

1 16 No 15
2 20 Yes 16
3 21 Yes 17
4 16 Yes 16
5 15 No 18
... ... ... ...
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Lots of methods available:

Q-learning

G-estimation

IPTW

A-learning

dWOLS

MSMs

OWL

etc...
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Identifying the best treatment regime

� If only one treatment decision:

E [Y |X ,A]︸ ︷︷ ︸
Expected outcome
(to be maximized)

� We might propose the following model

E [Y |X ,A;β, ψ] = β0 + β1IOP + A(ψ0 + ψ1IOP)

“Treat (A = 1) if ψ0 + ψ1IOP > 0”
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Identifying the best treatment regime

� If only one treatment decision:

E [Y |X ,A]︸ ︷︷ ︸
Expected outcome
(to be maximized)

� We might propose the following model

E [Y |X ,A;β, ψ] = β0 + β1IOP + A(ψ0 + ψ1IOP)

“Treat (A = 1) if ψ0 + ψ1IOP > 0”

� More generally, split outcome into two components:

E [Y |X ,A;β, ψ]︸ ︷︷ ︸
Expected outcome
(to be maximized)

=

Impact of patient history
in the absence of treatment︷ ︸︸ ︷

G (X ;β) + γ(X ,A;ψ)︸ ︷︷ ︸
Impact of treatment

on outcome

� Simplifies focus: find Aopt that maximizes γ(X ,A;ψ).
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Identifying the best treatment regime

� Suppose the true outcome model is:

E [Y |X ,A;β, ψ] = β0 + β1IOP + β2IOP2 + A(ψ0 + ψ1IOP)

� But we propose:

E [Y |X ,A;β, ψ] = β0 + β1IOP + A(ψ0 + ψ1IOP)
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Dynamic WOLS (dWOLS)

E [Y |X ,A;β, ψ] = G (X ;β) + γ(X ,A;ψ)

� Three models to specify:

1. Blip model: γ(X ,A;ψ).
2. Treatment-free model: G (X ;β).
3. Treatment model: P(A = 1|X ;α).

� Estimate ψ via WOLS of Y on covariates in blip and
treatment-free models, with weights
w = |A− P(A = 1|X ; α̂)|.
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Identifying the best treatment regime

� Suppose the true outcome model is:

E [Y |X ,A;β, ψ] = β0 + β1IOP + β2IOP2 + A(ψ0 + ψ1IOP)

� But we propose:

E [Y |X ,A;β, ψ] = β0 + β1IOP + A(ψ0 + ψ1IOP)

� A weighted regression with weights w = |A− P(A = 1|X ; α̂)|
will still yield consistent estimators of ψ0, ψ1.

� The estimators are “doubly robust”: consistent if at least one
of the treatment-free or treatment components is correctly
specified.

� The blip must always be correct.
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Estimation

So all we have to do is specify some models, estimate the model
parameters, then choose the treatment that maximizes the
expected outcome - easy!
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Estimation

Measurement
error

Interference

Patient-led
outcomes

15



Measurement error

Target measurement: ‘average’ IOP.

Observed measurement: 1-3 in-clinic readings within < 5 minutes.

Some patients have access to more regular at-home tonometry.
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Measurement error

True history

Treatment

Outcome
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Measurement error

True history

Treatment

Outcome

Reported history
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Measurement Error

X

A

Y

X*
Estimation: suppose the true outcome model is:

E [Y |X ,A;β, ψ] = β0 + β1X + β2X
2 + A(ψ0 + ψ1X )

If we only observe X ∗. What happens? What can we do about it?

Solution: ‘correct’ for the measurement error using additional data.
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Measurement Error

X

A

Y

X*
Estimation: suppose the true outcome model is:

E [Y |X ,A;β, ψ] = β0 + β1X + β2X
2 + A(ψ0 + ψ1X )

If we only observe X ∗. What happens? What can we do about it?

Solution: ‘correct’ for the measurement error using additional data.
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Measurement Error

Assume: classical additive measurement error:

Observed = True + Error

X ∗ = X + U

U ∼ N(0, σ2u); Y ⊥ X ∗|X

Assume: replicate measurements available on at least some
patients.

First IOP Second IOP
Patient measurement measurement

1 16 15
2 20 16
3 21 17
4 16 16
5 15 18
... ... ...
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Regression Calibration

Simple correction method: Regression Calibration.

Principle:

1. Use additional data to estimate E [X |X ∗,A] = Xrc .

2. Replace X with Xrc and carry out a standard analysis.

3. Adjust the resulting standard errors to account for the
estimation in step 1.
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Identifying the best treatment regime

� Suppose the true outcome model is:

E [Y |·] = β0 + β1X + β2X
2 + A(ψ0 + ψ1X )

� If we have RC estimates Xrc then we could fit

E [Y |·] = β0 + β1Xrc + β2X
2
rc + A(ψ0 + ψ1Xrc)

� But we might mis-specify the model as

E [Y |·] = β0 + β1Xrc + A(ψ0 + ψ1Xrc)

where A depends on X ∗.

� Establish (approximate) covariate balance in Xrc by regressing
A on Xrc .

X

A

Y

X*
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Future Treatment

Suppose we conclude that our treatment rule should be:

“If 3-month average IOP > 15 add secondary drop, otherwise,
maintain current treatment regime.”

I go to the clinic and my IOP measurement is 16. Then what?

What is P(X ≤ 15|X ∗ = 16)?
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Future treatment

In some settings, results fairly intuitive:

Observed IOP = True IOP + Error
11 12 13 14 15 16 17 18 19

0.0

0.1

0.2

0.3

0.4

0.5 True IOP ~ N(15,16)
Treat if IOP > 15
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Observed IOP = True IOP + Error
11 12 13 14 15 16 17 18 19

0.0

0.1

0.2

0.3

0.4

0.5

●
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Future treatment

In some settings, results fairly intuitive:

Observed IOP = True IOP + Error
11 12 13 14 15 16 17 18 19

0.0

0.1

0.2

0.3

0.4

0.5

●

P(X < 15 | X* = 16) = 0.28

●

P(X > 15 | X* = 12) = 0.04

True IOP ~ N(15,16)
Treat if IOP > 15
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Future treatment

In some settings, results fairly intuitive:

Observed IOP = True IOP + Error
11 12 13 14 15 16 17 18 19

0.0

0.1

0.2

0.3
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Future treatment

In others, perhaps more of a surprise (to some):

Observed IOP = True IOP + Error
11 12 13 14 15 16 17 18 19

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 True IOP ~ N(15,16)
Treat if IOP > 17
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“Isn’t this just a prediction problem?”

Data availability will vary by study and by variable:

Scenario Analysis Application

1: “We never observe the truth.” X ∗ X ∗

2: “We always observe the truth.” X X

3: “Past data are error-prone, but
future data may not be.”

X ∗ X

4: “Past data are not error-prone,
but future data may be.”

X X ∗

25



“Isn’t this just a prediction problem?”

What if error-free data are possible, but expensive?

Scenario Analysis Application

1: “We never observe the truth.” X ∗ X ∗

2: “Past data are error-prone, but
future data may not be.”

X ∗ X

3: “Past data are not error-prone,
but future data may be.”

X X ∗

4: “We always observe the truth.” X X
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“Isn’t this just a prediction problem?”

Only Scenario 4 is well-studied.

Scenario Analysis Application

1: “We never observe the truth.” X ∗ X ∗

2: “Past data are error-prone, but
future data may not be.”

X ∗ X

3: “Past data are not error-prone,
but future data may be.”

X X ∗

4: “We always observe the truth.” X X
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“Isn’t this just a prediction problem?”

Correcting for measurement error is at worst competitive with an
analysis that ignores it completely.

Scenario Analysis Application

1: “We never observe the truth.” X ∗ X ∗

2: “We always observe the truth.” X X

3: “Past data are error-prone, but
future data may not be.”

X ∗ X

4: “Past data are not error-prone,
but future data may be.”

X X ∗

25



Measurement error

True history

Treatment

Outcome

Reported history
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Estimation

Measurement
error

Interference

Patient-led
outcomes
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Interference

Interference: another patient’s treatment doesn’t affect my
outcome.
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Interference

Common assumption: no interference (or ‘spillover’):
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Assumptions

Common assumption: no interference (or ‘spillover’):
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Interference

X A Yi i i

X A Yj j j
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X A Yi i i

X A Yj j j
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Identifying the best treatment regime

� No interference:

E [Y |X ,A]︸ ︷︷ ︸
Expected outcome
(to be maximized)

� We might propose the following model

E [Yi |Xi ,Ai ;β, ψ] = β0 + β1Xi + Ai (ψ0 + ψ1Xi )

“Treat (Ai = 1) if ψ0 + ψ1Xi > 0”
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Identifying the best treatment regime

With interference: two ideas:

� (1) Add interaction terms:

E [Y |X ,A;β, ψ] = β0 + β1Xi + β2Xj + Ai (ψ0 + ψ1Xi + ψ2Aj)

� Then dWOLS proceeds as usual: “Treat (Ai = 1) if
ψ0 + ψ1Xi + ψ2Aj > 0”

� (2) Use ‘network propensity weights’: for each individual i ,
apply weights based on the probability their neighbour is
treated.

32
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Interference

Estimation is only half the battle.

Example: Alex and Blake share a household. The following table
summarizes the ranking of the four possible combinations of a
binary treatment:

Rank Alex Blake

1 o -
2 - o
3 o o
4 - -

Treatment: o
No treatment: -
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Interference

� In what order do we
prescribe treatments to
patients?

� What if resources are
limited?

� How do we balance the
needs of the individual
against the needs of the
population?

Rank Alex Blake

1 o -
2 - o
3 o o
4 - -

Treatment: o
No treatment: -
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Estimation

Measurement
error

Interference

Patient-led
outcomes
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Patient-led outcomes

Recall the treatment options for glaucoma:

� Lifestyle changes.

� Eye drops (numerous options).

� Surgery.

Treatments have various side effects, including:

� ‘Minor’: eyelash growth, iris discoloration.

� ‘Major’: additional vision loss.
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Patient-led outcomes

Prior research tells us the probability of side effects, and the
‘average’ IOP decrease following each treatment.

Suppose you had the swallowing predicted effects:

Iris Eyelash Vision E [IOP
Treatment discoloration growth loss change]

Drop A 80% 40% 1% 2

Drop B 90% 30% 1% 2

Which treatment do you choose? What influences your decision?

How do we elicit this information from patients?
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Suppose you had the swallowing predicted effects:

Iris Eyelash Vision E [IOP
Treatment discoloration growth loss change]

Drop A 80% 40% 1% 2

Drop B 90% 30% 1% 2

Surgery 1% 0% 5% 3

Which treatment do you choose? What influences your decision?

How do we elicit this information from patients?
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Patient-led outcomes

Patients can provide information to varying degrees:

� Ranking: “I would prefer iris discoloration to eyelash growth,
and prefer both to additional vision loss.”
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Patient-led outcomes

Patients can provide information to varying degrees:

� Weighting: “I would slightly prefer iris discoloration to eyelash
growth, and greatly prefer both to vision loss.”

80

60

10
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Patient-led outcomes

Patients can provide information to varying degrees:

� Utility functions: “I want
to maximize this
complicated function of all
the possible outcomes.”

40



Patient-led outcomes

Patients can provide information to varying degrees:

� Ranking: “I would prefer iris discoloration to eyelash growth,
and prefer both to additional vision loss.”

� Weighting: “I would prefer iris discoloration twice as much as
eyelash growth, and ten times as much as additional vision
loss.”

� Utility functions: “I want to maximize this function of the
possible outcomes.”
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Patient-led outcomes

Methods from multi-attribute decision making can be applied to
recommend treatment options.

We can also consider non-probabilistic properties of treatments,
such as their cost.

Iris Eyelash Vision IOP
Treatment Cost discoloration growth loss change

Drop A $ 80% 40% 1% 2

Drop B $$ 90% 30% 1% 2

Surgery $$$ 1% 0% 5% 3
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Patient-led outcomes

Such methods can be implemented via web-based applications:

https://shiny.math.uwaterloo.ca/sas/mwallace/mapp/madm/
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So where are we now?

� DTRs an important tool in precision medicine.

� Lots of estimation methods available, ease of implementation,
and avoiding ‘black boxes’ a big challenge.

� Beyond estimation: lots of interesting, open, practical
problems to work on.

- Measurement error.

- Interference.

- Patient-led
outcomes.

- Model assessment.

- Treatment quality.

- etc. etc. etc.

Estimation

Measurement
error

Interference

Patient-led
outcomes
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