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Glaucoma: One Disease, Many Treatments

Glaucoma: group of eye diseases associated with elevated
intraocular pressure (IOP).

IOP can be measured in various ways.
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Glaucoma: One Disease, Many Treatments

Elevated IOP can cause vision loss, which can be measured
through visual field tests.

Treatment options attempt to lower IOP (and by extension
preserve visual field), they include:

� Lifestyle changes.

� Eye drops (numerous options).

� Surgery.
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Glaucoma: One Disease, Many Treatments

Treatment decisions are made based on various factors:

� Current and past IOP.

� Current and past treatments.

� Concerns over side effects.

� Broader risk factors.

� Other characteristics (such as age).
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Glaucoma: One Disease, Many Treatments

Treatment decisions are made based on various factors:

� Current and past IOP.

� Current and past treatments.

� Concerns over side effects.

� Broader risk factors.

� Other characteristics (such as age).

Precision Medicine: tailoring treatment decisions to patient-level
characteristics.
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Dynamic treatment regimes

� Dynamic treatment regimes (DTRs) ‘formalize’ personalized
treatment:

� “Patient is currently taking Azarga eye drops. If current IOP
is 15 or higher, add Alphagan eye drops, otherwise continue

with only Azarga.”

� How do we choose the best DTR?

Should our IOP cut-off be 13, 15, 20?

� What makes this difficult?
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The Data

We typically work with data from observational studies.

Observed Drop VFP at
Patient IOP added? 3 months

1 16 No 73
2 20 Yes 55
3 21 Yes 50
4 16 Yes 61
5 15 No 42
... ... ... ...

VFP = Visual Field Percentage
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The Data

We typically work with data from observational studies.

Observed Drop VFP at
Patient IOP added? 3 months

X A Y

1 16 No 73
2 20 Yes 55
3 21 Yes 50
4 16 Yes 61
5 15 No 42
... ... ... ...

VFP = Visual Field Percentage
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Notation

X A Y

Pre-treatment
covariates

Treatment
received

Outcome

  New drop? 3 month
visual field

Initial IOP

DTR: treatment Aopt that optimizes E [Y |X ,Aopt ]
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Identifying the best treatment regime: multi-stage

DTR: treatment sequence Aopt
1 ,Aopt

2
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Single Stage Analysis

X A Y
Observed Drop VFP at

Patient IOP added? 3 months
X A Y

1 16 No 73
2 20 Yes 55
3 21 Yes 50
4 16 Yes 61
5 15 No 42
... ... ... ...
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Lots of methods available:

Q-learning

G-estimation

IPTW

A-learning

dWOLS

MSMs

OWL

etc...
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Identifying the best treatment regime

� If only one treatment decision:

E [Y |X ,A]︸ ︷︷ ︸
Expected outcome
(to be maximized)

A ∈ {0, 1}

� We might propose the following model

E [Y |X ,A;β, ψ] = β0 + β1IOP + A(ψ0 + ψ1IOP)

“Aopt = 1 if ψ0 + ψ1IOP > 0”
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Identifying the best treatment regime

� If only one treatment decision:

E [Y |X ,A]︸ ︷︷ ︸
Expected outcome
(to be maximized)

A ∈ {0, 1}

� We might propose the following model

E [Y |X ,A;β, ψ] = β0 + β1IOP + A(ψ0 + ψ1IOP)

“Aopt = 1 if ψ0 + ψ1IOP > 0”

� More generally, split outcome into two components:

E [Y |X ,A;β, ψ]︸ ︷︷ ︸
Expected outcome
(to be maximized)

=

Impact of patient history
in the absence of treatment︷ ︸︸ ︷

G (X ;β) + γ(X ,A;ψ)︸ ︷︷ ︸
Impact of treatment

on outcome

� Simplifies focus: find Aopt that maximizes γ(X ,A;ψ).
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Identifying the best treatment regime

� Suppose the true outcome model is:

E [Y |X ,A;β, ψ] = β0 + β1IOP + β2IOP2 + A(ψ0 + ψ1IOP)

� But we propose:

E [Y |X ,A;β, ψ] = β0 + β1IOP + A(ψ0 + ψ1IOP)
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Dynamic WOLS (dWOLS)

E [Y |X ,A;β, ψ] = G (X ;β) + γ(X ,A;ψ)

� Three models to specify:

1. Blip model: γ(X ,A;ψ).
2. Treatment-free model: G (X ;β).
3. Treatment model: P(A = 1|X ;α).

� Estimate ψ via WOLS of Y on covariates in blip and
treatment-free models, with weights
w = |A− P(A = 1|X ; α̂)|.
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Identifying the best treatment regime

� Suppose the true outcome model is:

E [Y |X ,A;β, ψ] = β0 + β1IOP + β2IOP2 + A(ψ0 + ψ1IOP)

� But we propose:

E [Y |X ,A;β, ψ] = β0 + β1IOP + A(ψ0 + ψ1IOP)

� A weighted regression with weights w = |A− P(A = 1|X ; α̂)|
will still yield consistent estimators of ψ0, ψ1.

� The estimators are “doubly robust”: consistent if at least one
of the treatment-free or treatment components is correctly
specified.

� The blip must always be correct.
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Identifying the best treatment regime: multi-stage

DTR: treatment sequence Aopt
1 ,Aopt

2
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Multi-stage recursion

More formally, write Ỹj for the stage j ‘pseudo-outcome’.

Ỹj is the expected outcome assuming optimal treatment from
stage j + 1 onwards.

Pseudo-outcome = observed outcome + estimated ‘loss’ of
receiving non-optimal treatments
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Multi-stage recursion

More formally, write Ỹj for the stage j ‘pseudo-outcome’.

Ỹj is the expected outcome assuming optimal treatment from
stage j + 1 onwards.

Pseudo-outcome = observed outcome + estimated ‘loss’ of
receiving non-optimal treatments

Ỹj = Y +
J∑

k=j+1

[γk(Xk ,A
opt
k ; ψ̂k)− γk(Xk ,Ak ; ψ̂k)]

We plug Ỹj into our dWOLS procedure and proceed similarly.
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Measurement error

History

Treatment

Outcome
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Measurement error: History

History

Target measurement: ‘average’ IOP.

Observed measurement: 1-3 in-clinic readings within < 5 minutes.

Some patients have access to more regular at-home tonometry.
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Measurement error: Treatment

Treatment

Target measurement: adherence with prescribed dosing regimen.

Observed measurement: prescribed treatment or patient-reported
adherence.

Full adherence with therapies reported in 10% of patients.

M T T W F S S 
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Measurement error: Outcome

Outcome

Target measurement: % of remaining vision.

Observed measurement: visual field test.
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Measurement error

History

Treatment

Outcome
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Measurement error

True
History

True
Treatment

True
Outcome

Reported 
History

Reported 
Outcome

Prescribed 
Treatment
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Measurement Error

True history

Treatment

Outcome

Reported history
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Measurement Error

X

A

Y

X*
Estimation: suppose the true outcome model is:

E [Y |X ,A;β, ψ] = β0 + β1X + β2X
2 + A(ψ0 + ψ1X )

But we only observe

X ∗ = X + U U ∼ N(µu, σ
2
u)
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Regression Calibration

Simple correction method: Regression Calibration.

Principle:

1. Use additional data to estimate E [X |X ∗,A] = Xrc .

2. Replace X with Xrc and carry out a standard analysis.

3. Adjust the resulting standard errors to account for the
estimation in step 1.

First IOP Second IOP
Patient measurement measurement

1 16 15
2 20 16
3 21 17
4 16 16
5 15 18
... ... ...
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Identifying the best treatment regime

� Suppose the true outcome model is:

E [Y |·] = β0 + β1X + β2X
2 + A(ψ0 + ψ1X )

� If we have RC estimates Xrc then we could fit

E [Y |·] = β0 + β1Xrc + β2X
2
rc + A(ψ0 + ψ1Xrc)

� But we might mis-specify the model as

E [Y |·] = β0 + β1Xrc + A(ψ0 + ψ1Xrc)

where A depends on X ∗.

� Solution: dWOLS using P(A = 1|Xrc) estimates.

X

A

Y

X*
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Measurement error

History

True 
Treatment

Outcome

Prescribed 
Treatment
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Measurement error

X

A

Y

A*

For binary A, misclassification can be characterized by the positive
and negative predictive values:

PPV = P(A = 1|A∗ = 1) NPV = P(A = 0|A∗ = 0)
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Measurement error

X

A

Y

A*

Suppose the true outcome model is:

E [Y |X ,A;β, ψ] = β0 + β1X + β2X
2 + A(ψ0 + ψ1X )

but we only observe A∗.

Key question: do the misclassification probabilities depend on X?
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Measurement error

E [Y |X ,A;β, ψ] = β0 + β1X + β2X
2 + A(ψ0 + ψ1X )

If misclassification does not depend on X , then our estimates of
ψ0, ψ1 will be biased:

ψ∗
0 = (PPV + NPV − 1)ψ0 ψ∗

1 = (PPV + NPV − 1)ψ1
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Measurement error

E [Y |X ,A;β, ψ] = β0 + β1X + β2X
2 + A(ψ0 + ψ1X )

If misclassification does not depend on X , then our estimates of
ψ0, ψ1 will be biased:

ψ∗
0 = (PPV + NPV − 1)ψ0 ψ∗

1 = (PPV + NPV − 1)ψ1

However: our treatment rule is of the form

Aopt = 1 if ψ0 + ψ1X > 0

which is unaffected if ψ0, ψ1 are biased by the same factor.
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Measurement error

If misclassification depends on X , then corrective action is required.

Upcoming work modifies G-estimation to account for treatment
misclassification.

Further questions exist related to intention to treat analyses, and
implications of (non-) adherence for identifying optimal treatment
rules.
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Measurement error

History

Treatment True Outcome

Reported 
Outcome
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Measurement error

X

A Y

Y*

Suppose the true outcome model is:

E [Y |X ,A;β, ψ] = β0 + β1X + β2X
2 + A(ψ0 + ψ1X )

but we only observe

Y ∗ = Y + U U ∼ N(µu, σ
2
u)
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Measurement error

E [Y |X ,A;β, ψ] = β0 + β1X + β2X
2 + A(ψ0 + ψ1X )

Y ∗ = Y + U U ∼ N(µu, σ
2
u)

� Unbiased error: parameter estimates also unbiased.

� Biased error, independent of A: ψ estimators still consistent.

� Biased error, not independent of A: ψ estimators no longer
reliable.
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Measurement Error and Pseudo-outcomes
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Measurement Error and Pseudo-outcomes

Recall the multi-stage case requires the computation of
pseudo-outcomes:

Ỹj = Y +
J∑

k=j+1

[γk(Xk ,A
opt
k ; ψ̂k)− γk(Xk ,Ak ; ψ̂k)].

Errors in X , A, or Y create additional problems.
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Future Treatment

Suppose we conclude that our treatment rule should be:

“If 3-month average IOP ≥ 15 add secondary drop, otherwise,
maintain current treatment regime.”

I go to the clinic and my IOP measurement is 16. Then what?

What is P(X < 15|X ∗ = 16)?
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“Isn’t this just a prediction problem?”

Data availability will vary by study and by variable:

Scenario Analysis Application

1: “We never observe the truth.” X ∗ X ∗

2: “We always observe the truth.” X X

3: “Past data are error-prone, but
future data may not be.”

X ∗ X

4: “Past data are not error-prone,
but future data may be.”

X X ∗

32



“Isn’t this just a prediction problem?”

What if error-free data are possible, but expensive?

Scenario Analysis Application
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“Isn’t this just a prediction problem?”

Only Scenario 4 is well-studied.

Scenario Analysis Application

1: “We never observe the truth.” X ∗ X ∗

2: “Past data are error-prone, but
future data may not be.”

X ∗ X

3: “Past data are not error-prone,
but future data may be.”

X X ∗

4: “We always observe the truth.” X X
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Future Treatment

Suppose we conclude that our treatment rule should be:

“If 3-month average IOP ≥ 15 add secondary drop, otherwise,
maintain current treatment regime.”

I go to the clinic and my IOP measurement is 16. Then what?

What is P(X < 15|X ∗ = 16)?
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Future Treatment

We can explore such probabilities through computation/simulation:

https://shiny.math.uwaterloo.ca/sas/mwallace/probmistreat/
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So where are we now?

� DTRs an important tool in precision medicine.

� Measurement error an important consideration in patient
history, treatment, outcome, and future decision making.

� There are some special cases where errors have limited
impact, or may be corrected for with standard theory.

� But: many more cases to explore.

True
History

True
Treatment

True
Outcome

Reported 
History

Reported 
Outcome

Prescribed 
Treatment
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